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COMMENT 

Quasilinearisation and three-dimensional oscillators 

M Jameel? 
International Centre for Theoretical Physics, Miramare, Trieste, Italy 

Received 21 September 1987 

Abstract. The anharmonic symmetric oscillator is a frequently used model for physical 
systems. The recently developed quasilinearisation technique is applied to this model as 
well as to the simpler one without the quartic term in the potential. 

1. Motivation 

The quasilinearisation technique of Bellman and Kalaba [ 11 has recently been applied 
[2] to the W K B  solution of the Schrodinger equation with the Coulomb potential. Since 
this method is rather transparent as well as quite powerful, it is of interest to extend 
its study to other physical systems. In this comment, we shall first test the procedure 
on the exactly solvable isotropic harmonic oscillator, and then apply it to the anhar- 
monic symmetric oscillator which has recently received considerable attention in the 
literature. 

2. The method 

The radial Schrodinger equation for a spherically symmetric potential V ( r )  is cus- 
tomarily written as 

u ” ( r )  + A2k2u(  r )  = 0 (1) 

A 2  = 2 m /  h2  k 2 = E - V ( r ) - L 2 / A 2 r 2 .  ( 2 )  

where 

The physical value of L2 is / ( I +  l ) ,  but it is well known that somewhat different values 
need to be taken in various orders of the W K B  approximation in order to ensure the 
correct behaviour of the wavefunction, namely U - r ‘+’ ,  near the origin. When all 
orders are summed up, the actual value 1 ( 1 + 1 )  is reproduced [3]. Keeping this in 
mind, it is convenient to treat L2 as an adjustable parameter in the approximation 
scheme. 

The usual W K B  substitution is now made: 

u ( r )  = constant x exp A y (  r )  d r  (i ) 
t Permanent address: Pakistan Atomic Energy Commission, P 0 Box 11 14, Islamabad, Pakistan. 

(3) 
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The function y ( r )  is seen to obey the equation 

y ' =  -A(y*+ k'). 

Introducing a new variable 

x = A r  

equation (4) simplifies to 

Y'(x) = -Y*(x) - k2(x). 

(4) 

Applying the quasilinearisation technique to this non-linear equation, the following 
recursion differential equations are obtained [2]: 

Y L i l  =Y;-2YpYprl-k2. ( 7 )  

These equations may be successively solved for higher values of p so as to obtain the 
desired order of approximation to the true solution of (6). The lowest- (zeroth-) order 
solution is given by 

yo(x) = ik(x).  (8) 

y{ = -2iky, -2k'. (9) 

The next approximation y l (x )  satisfies the equation 

This can be integrated to obtain 

where 

yio1 = ik. 
1 d  y[ l"+l l  -_ - - 2ik dx (-y[l"]) 

The functions y\"] can be explicitly calculated to yield the series 

(12) 
k' 

We note in passing that the corresponding equation (3.12) of [2] contains several 
errors, presumably because of misprinting. 

Using y , ( x )  from (12) as input, higher-order approximations can be obtained from 
(7), but detailed analysis is restricted to this order in the present study, 

3. Harmonic oscillator 

The potential energy function for an isotropic harmonic oscillator may be written as 

V(r) ==jmw2r2. (13) 
Using the quantities A and x defined previously, and introducing another parameter 

E = i A w  (14) 
the potential energy can be expressed as 

V(x) = e2x2. (15) 
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The function k 2  of (2) then becomes 

k 2 ( x )  = E - E ~ x ~ -  L2/x2 

or 

k = P(x) /x  

with 

P( X) = ( - E ~ x ~  + EX‘ - L2)1’2. 

The classical turning points, obtained by equating k 2  to zero, are 

1 E i ( E 2 - 4 ~ 2 L 2 ) ” 2  .=-( E 2 

(16) 

From the reality condition on x, we get the following lower bound on energy: 

E 3 hwL. (19) 

The ‘quasilinearised’ ( 7 )  can now be solved explicitly, to obtain for the harmonic 
oscillator: 

iP E ~ x ~ -  L2 i ~ ( ~ E * x ~ - ~ E x ~ + ~ L ~ )  ~ X ~ ( ~ E * X * - - E ) ~  +-+ + + . . . .  (20) 4xP3 2 p5 Y l ( X )  =-+ x 2xP2 4xP 

Substituting y1 in (3), we obtain the radial wavefunction for the harmonic oscillator, 
correct to the first two orders. It can easily be checked that the proper behaviour of 
u( r )  for large distances is reproduced: 

u(r)  r-m - e x p ( - E r 2 ) .  

Energy eigenvalues are obtained by using the quantisation condition 

27rin = f y dx (22) 

where the integral is taken around the branch cut joining the two classical turning 
points given by (18). Using residues, the integral can easily be evaluated to yield 

27rin = - 2 ~ i ( L +  l)+i.rrE/E 

or 

E = 2(  n + L +  1 ) ~ .  

It is shown in [3] that, in the order considered, the parameter L2 has the value (I+;)’. 
Hence 

E = ( n + l + i ) h w  (23) 

which is the right formula for the energy spectrum of a three-dimensional oscillator, 
remembering that n should be an even integer from parity considerations. 
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4. Anharmonic oscillator 

We now consider the anharmonic symmetric oscillator which has recently been studied 
[ 4 , 5 ] .  The potential for the system may be taken as: 

( 2 4 )  V (  r )  = fmw’r’+ ah4r4 .  

V ( x )  = E 2 X Z + ( Y X 4 .  ( 2 5 )  

In terms of the variable x introduced previously, the potential can be written as 

The corresponding function k’ is then 

k ’ ( x )  = E - E’X’ - a x 4  - L’/x’ .  

Hence 

with 

Q ( x )  = ( - a x 6  - p’x4+ EX’ - L’)”’. 

The equation k’=O can be solved as a cubic algebraic equation in x’. It turns out 
that, in general, there are two positive, two negative and two complex roots. The 
classical turning points correspond to the positive square roots of the expressions 

and  

G = & ( 2 ~ ~  + 9aEs’+ 2 7 a 2 L 2 )  

H = 4 ( ~ ~ + 3 a E ) “ ~ .  

As in the case of the harmonic oscillator, the function y , ( x )  is obtained by calculating 
the derivatives of k ( x )  and using ( 1 2 ) .  Explicitly, we obtain 

iQ 2 a x 6 + & * x 4 -  L’ i ~ ( ~ ~ C Y X ~ + ~ E ’ X ~ - ~ E X ~ + ~ L ~ )  
X 2xQ’ 4xQ 4 x Q 3  

y l ( x )  =-+ +-+ 

~ x ~ ( ( ~ c Y x ~ + ~ E ~ x ~ -  E)’  + +. . . ( 2 8 )  2Q5 

where Q is given by ( 2 7 b ) .  
When CY = 0, the solution for the harmonic oscillator is, of course, recovered. 

5. Conclusion 

It has been shown that the quasilinearisation technique works very well for the 
spherically symmetric three-dimensional oscillator. This enhances confidence in the 
procedure which is then applied to the harmonic oscillator potential perturbed by a 
quartic term. 
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